k-Hyperarc Consistency for Soft Constraints over Divisible Residuated Lattices

نویسنده

  • Simone Bova
چکیده

We investigate the applicability of divisible residuated lattices (DRLs) as a general evaluation framework for soft constraint satisfaction problems (soft CSPs). DRLs are in fact natural candidates for this role, since they form the algebraic semantics of a large family of substructural and fuzzy logics [GJKO07, Háj98]. We present the following results. (i) We show that DRLs subsume important valuation structures for soft constraints, such as commutative idempotent semirings [BMR97] and fair valuation structures [CS04], in the sense that the last two are members of certain subvarieties of DRLs (namely, Heyting algebras and BL-algebras respectively). (ii) In the spirit of [LS04, BG06], we describe a polynomial-time algorithm that enforces khyperarc consistency on soft CSPs evaluated over DRLs. Observed that, in general, DRLs are neither idempotent nor totally ordered, this algorithm amounts to a generalization of the available algorithms that enforce k-hyperarc consistency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soft Constraints Processing over Divisible Residuated Lattices

We claim that divisible residuated lattices (DRLs) can act as a unifying evaluation framework for soft constraint satisfaction problems (soft CSPs). DRLs form the algebraic semantics of a large family of substructural and fuzzy logics [13, 15], and are therefore natural candidates for this role. As a preliminary evidence in support to our claim, along the lines of Cooper et al. and Larrosa et a...

متن کامل

Semi-G-filters, Stonean filters, MTL-filters, divisible filters, BL-filters and regular filters in residuated lattices

At present, the filter theory of $BL$textit{-}algebras has been widelystudied, and some important results have been published (see for examplecite{4}, cite{5}, cite{xi}, cite{6}, cite{7}). In other works such ascite{BP}, cite{vii}, cite{xiii}, cite{xvi} a study of a filter theory inthe more general setting of residuated lattices is done, generalizing thatfor $BL$textit{-}algebras. Note that fil...

متن کامل

Regularity in residuated lattices

In this paper, we study residuated lattices in order to give new characterizations for dense, regular and Boolean elements in residuated lattices and investigate special residuated lattices in order to obtain new characterizations for the directly indecomposable subvariety of Stonean residuated lattices. Free algebra in varieties of Stonean residuated lattices is constructed. We introduce in re...

متن کامل

Classes of Pseudo-BCK algebras -Part I

In this paper we study particular classes of pseudo-BCK algebras, bounded or not bounded, as pseudo-BCK(pP) algebras, pseudo-BCK(pP) lattices, pseudo-Hájek(pP) algebras and pseudo-Wajsberg algebras. We introduce new classes of pseudo-BCK(pP) lattices, we establish hierarchies and we give some examples. We work with left-defined algebras and we work with → and ; as primitive operations, not with...

متن کامل

GENERALIZED RESIDUATED LATTICES BASED F-TRANSFORM

The aim of the present work is to study the  $F$-transform over a generalized residuated lattice.  We discuss the properties that are common with the $F$-transform over a residuated lattice. We show that the $F^{uparrow}$-transform can be used in establishing a fuzzy (pre)order on the set of fuzzy sets.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0805.3261  شماره 

صفحات  -

تاریخ انتشار 1983